

VIRTUAL REALITY EDUCATIONAL TOOLS

IMMERSIVE PHOTONICS LAB

Photonics training accessible to anyone, anywhere, anytime!

Immersive Photonics Lab

WHAT'S THE IMMERSIVE PHOTONICS LAB?

The Immersive Photonics Lab is an innovative training tool that places the learner in a virtual reality photonics lab. The immersive learning environment helps a participant master the professional and technical handiwork.

Immersive Photonics Lab headset

View of the virtual environment

WHAT'S INSIDE?

The **Immersive Photonics Lab** integrates numerous laser practical trainings at University levels. Each module is autonomous as a result of its different modes of use:

- A beginner's tutorial to introduce different optical elements
- A step-by-step guided practical activity with different levels to develop procedural skills
- A «sandbox» mode to work freely

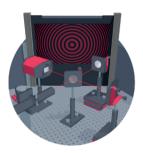
KEY ADVANTAGES:

- Develop procedural skills
- Boost autonomous learning
- Guide learners with progressive levels
- Ready-to-use practical works
- Stimulate motivation and interest
- Avoid purchasing expensive equipment
- Limit the equipment downtime pr damage for training

TARGET AUDIENCE:

- PhD, Engineers, technicians and operators in companies (gesture and posture managment)
- Researchers and research laboratories staff
- High school and university students
- Lifelong learners in photonics
- General public to discover photonics and laser

READY-TO-USE PRACTICAL WORKS:


Lab task #1 - LASER ALIGNMENT

4 levels - At the end of this lab task, the learner will be able to align a laser beam on a predefined axis, using two mirrors and two diaphragms.

Lab task #3 - MICHELSON INTERFEROMETER

3 levels - At the end of this lab task, the learner will be able to tune a pre-mounted Michelson interferometer using a monochromatic source

Lab task #2 - LASER COLLIMATION

3 levels - At the end of this lab task, the learner will be able to correctly place a lens in a laser beam and to align an optical system (enlarger/reducer of a beam) consisting of a diverging lens and a converging lens.

Lab task #4 - LASER SAFETY- BEAM MANAGEMENT

3 levels - At the end of this lab task, the learner will be able to manage an infrared laser beam safely and without laser leakage, using a beam blocker and an infrared card.

TECHNICAL SPECIFICATIONS:

\ \ \ \ \	Reproduced physical phenomena	 Gaussian beams propagation Interference Collimation and focusing Polarization (work in progress)
	Educational scenarios	 "Tutorial" mode to get used to virtual optical components "Step-by-step" mode to improve procedural skills "Sandbox" mode to work freely
	Assistance - Supervision	Observer mode on smartphone/tablet
	3D Environment	Representing a photonic lab environment
	Equipment	 Virtual reality headset (Pico 4 Ultra/Oculus quest 3/HTC Vive) Weight: 500 g Wireless No extra equipment Permanent licences

PYLA - TRAINING CENTER

Rue François Mitterrand 33400 TALENCE / France Ph. +33 (0)5 64 31 08 92

contact@pyla-formation.com

version 1/07-2025 - Photos : ALPhANOV-PYLA